Carbon-13 N.m.r. Spectra of Cardenolide Glycosides. Configuration of the 11,12-Epoxide in Cerbertin

By Lindsay Brown, H. T. Andrew Cheung, R. Thomas, Thomas R. Watson, Department of Pharmacy, University of Sydney, Sydney, Australia Jacques L. E. Nemorin, School of Chemistry, University of Sydney, Sydney, Australia

The ¹³C n.m.r. data of the *Digitalis* and the *Cerbera* cardiac glycosides, and of ouabain and neriifolin, have been analysed. Both ¹³C and ¹H n.m.r. results show that the 11,12-epoxide in cerbertin has an α -configuration.

EARLY ¹³C n.n.r. studies on the cardenolides were mainly on the genins.^{1,2} Natural glycosides examined in recent years include those with a 2,6-deoxy- or 6-deoxypyranose at position 3β ,³ and those with a 2,6-deoxyhexosulose doubly linked to positions 2α and 3β .⁴⁻⁶ There also included. Measurements were made in $CDCl_3$ - CD_3SOCD_3 (1:2), a good solvent for both glycosides and genins, which yields chemical shifts within 1 p.p.m. of those recorded in $CDCl_3$ (except for oxygen-bearing carbons).⁸

are also isolated examples of studies on cardenolide diand tri-saccharides.⁷ In a previous paper we analysed the ¹³C n.m.r. shieldings of a number of semi-synthetic cardenolide analogues.⁸ Here we present the ¹³C chemical-shift data of a number of natural cardenolides and their derivatives, viz. the Digitalis tri- β -D-digitoxosides digitoxin (1), digoxin (2), and 3'''-acetyldigoxin (3); the α -L-thevetosides neriifolin (6), cerbertin (8),⁹ 4'-acetylcerbertin (9), and deacetylcerbertin (7); ⁹ and the α -L-rhamnoside ouabain (10). For comparison, data of the genins digitoxigenin (4) and digoxigenin (5) are

 \dagger Our assignments of the α -L-thevetoside carbons are in agreement with those given to neriifolin and its 2'- and 2',4'-acetates in pentadeuteriopyridine (ref. 3).

TABLE 1									
13C	N.m.r.	chemical	shifts	a					

atom $(5)^{*}$ (2) (3) (1) $(4)^{**}$ (6) (7) (8) (9) (10) 129.729.929.929.829.630.229.929.829.666.227.626.526.627.726.626.328.328.434.3365.072.172.172.165.071.971.871.471.770.7433.129.829.929.833.229.629.929.829.929.325.5535.836.336.335.836.035.435.635.874.226.728.327.428.722.821.221.121.121.122.721.521.521.420.921.221.021.221.121.122.721.420.923.923.635.435.335.335.339.335.335.339.335.335.339.335.035.134.934.135.035.147.71129.729.929.920.920.920.926.926.826.846.448.848.448.449.039.363.263.463.448.846.448.935.135.435.339.31532.634.663.448.846.648.449.049.049.149.249.649.449.049.149.249.649.449.049.1 <th>Carbon</th> <th></th> <th colspan="9">Compounds</th>	Carbon		Compounds								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	atom	(5) 0	(2)	(3)	(1)	(4) b. c	(6)	(7)	(8)	(9)	(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	29.7	29.9	99 Q	20.8	20 6	30.9	20.0	90.9	(<i>0</i>) 90 6 6	60 4 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	27.6	26.5	26.5	28.8	23.0	26 6	20.0 96.3 d	29.0 96.2 d	29.0° 96.9 d	9/ 9/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	65.0	72 1	72 1	72 1	65.0	719	20.3	20.3	20.3	70.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	33.1	29.8	29.7	29.8	33.2	29.6	29.9	29.8	29.90	25.71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	35.8	36.3	36.3	36.3	35.8	36.0	35.4	25.0 35.6 f	25.8 f	74.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	26.5	26.5	26.4	26.6	26.6	26.6	26 9 d	26.7^{d}	26 7 d	33.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	21.5	21.5	21.4	20.9	21.2	21.0	21.2	21.1	21.1	22.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	40.7	40.7	40.7	41.0	41.1	41.0	38.1	38 2	38 1	39.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	31.9	32.0	32.0	35.0	35.1	35.1	35.4	35.3 1	35.3 /	39.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	35.0	34.8	34.8	34.9	35.1	34.9	34.1	35.0	35.1	47.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	29.7	29.9	29.9	20.9	20.9	20.9	54.6	54.8	54.8	66.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	73.8	73.5	73.5	39.4	39.4	39.3	63.2	63.4	63.4	48.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	55.9	55.8	55.9	49.5	49.6	49.4	49.0	49.0	49.1	49.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	84.8	84.6	84.6	83.9	84.0	83.9	82.7	82.8	82.8	83.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	32.6	32.6	32.6	32.4	32.3	32.3	32.6	32.7	32.6	32.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	27.1	27.0	27.1	26.6	26.6	26.6	28.1	28.1	28.1	21.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	45.4	45.4	45.4	50.6	50.6	50.6	45.6	45.7	45.8	49.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	9.3	9.4	9.4	15.7	15.7	15.7	15.8	15.7	15.8	17.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	23.7	23.7	23.7	23.7	23.8	23.6	23.8	23.9	23.9	60.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	176.3	176.1	176.5	175.8	175.9	175.8	174.4	173.7	173.9	175.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	73.5	73.5	73.5	73.1	73.2	73.1	73.3	73.2	73.3	73. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	116.5	116.3	116.3	116.6	116.6	116.6	116.5	116.7	116.6	116.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	174.6	174.1	174.2	173.8	173.9	173.9	173.8	173.7	173.9	174.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1′		95.3	95.3	95.3		97.3	97.2	93.2	92.9	97.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1″		98.9	98.8	98.9						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1'"		98.9	98.8	98.9						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'		38.1 ª	38.0 ª	38.1 4		72.6	72.1	73.7	73.3	70.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2″		38.0 *	37.9 *	38.0 *						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	277		38.2	36.0	38.2						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3′		66.3	66.2	66.3		83.5	83.5	80.4	74.7	70.8
3^{+} 67.3 70.4 67.3 75.2 75.2 75.0 78.0 72.4 $4''$ $82.2 f$ $82.2 f$ $82.2 f$ $82.2 f$ 75.2 75.2 75.0 78.0 72.4 $4''$ $82.2 f$ $82.2 f$ $82.2 f$ $82.2 f$ 75.2 75.0 78.0 72.4 $4'''$ 72.8 70.8 72.8 75.2 75.0 78.0 72.4 $5'$ 67.7 67.7 67.7 67.6 67.3 65.1 68.5 $5''$ 69.4 70.2 69.4 $66'$ 18.1 18.1 18.1 17.7 17.7 17.4 17.0 17.4 $6''$ 18.1 18.1 18.1 18.3 8.1 83.4 89.2 80.6 <td< td=""><td>3"</td><td></td><td>66.3</td><td>66.Z</td><td>66.3</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	3"		66.3	66.Z	66.3						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3		07.3	10.4	67.3 01.0 f		77 0			=0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4		81.97	81.94	81.97 89.07		15.2	75.2	75.0	78.0	72.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4		82.2 J	82.2 · 70 8	82.2 5						
5 67.7	4		12.8	10.8	12.8		67.0	e7 e	07.9	05 1	60.0
5''' 69.4 70.2 69.4 $6'$ 18.1 18.1 17.7 17.4 17.0 $17.$ $6''$ 18.1 18.1 18.1 17.7 17.4 17.0 $17.$ $6''$ 18.1 18.1 18.1 18.1 20.6 $20.5, 20.7$ $-OCOMe$ 169.9 169.8 169.2 169.7	5 5″		67.7	67.7	67.7		07.0	01.0	07.3	03.1	08.3
6' 18.1 18.1 18.1 17.7 17.4 17.0 17. $6''$ 18.1 18.1 18.1 17.7 17.4 17.0 17. $6''$ 18.1 18.1 18.1 18.1 17.7 17.4 17.0 17. $6''$ 18.1 18.1 18.1 18.1 18.1 17.7 17.4 17.0 17. $-OCOMe$ 20.6 20.5, 20.7 20.6 20.5, 20.7 169.8 169.9 169.9 169.9 169.9 169.7 169.8 169.9	5///		60.4	70.9	60 4						
6'' 18.1 18.1 18.1 17.7 17.4 17.0 17.7 $6'''$ 18.1 18.1 18.1 18.1 18.1 18.3 $-OCOMe$ 21.1 20.6 20.5, 20.7 169.8 169.9	0 6/		101	10.2	19.4		177	177	17 4	17.0	17.0
$\begin{array}{cccccc} 0 & 10.1 & 10.1 & 10.1 \\ 6''' & 18.3 & 18.1 & 18.3 \\OCOMe & 21.1 & 20.6 & 20.5, 20.7 \\OCOMe & 169.9 & 169.9 & 169.7 \end{array}$	6"		10.1	10.1	10.1		17.7	17.7	17.4	17.0	17.8
-OCOMe 20.6 20.5, 20.7 -OCOMe 169.9 169.9 169.7	6/″		10.1	18.1	18.3						
-0.00 169.9 169.9 169.8 169.7		10	10.0	21 1	10.0				90 G	20 5 20 7	
		le.		169.9					169.8	169 9 169 7	
-ONE 59.8 59.8 60.1 59.9	-OMe			100.0			59.8	59.8	60 1	59.9	

^{*a*} In p.p.m. downfield from tetramethylsilane in $CDCl_3-CD_3SOCD_3$ (1:2) with $\delta(CDCl_3)$ 78.8 p.p.m. ^{*b*} For assignments in $CD_3OD-CDCl_3$, see ref. 1. ^{*c*} Data from ref. 8. ^{*d-f*} Signals within a vertical column may be interchanged.

resonance decoupled spectrum. In digitoxin (1) and digoxin (2), C-4''' (with attached hydroxy-groups) is shielded by 9 p.p.m. compared with C-4' and C-4'' (with attached glycosyl groups). Likewise C-3''' and C-5''' are less shielded (by *ca.* 1 p.p.m.) than their counterparts on the other two residues. Assignment of the α -L-rhamnoside signals of ouabain (10) follows that of semi-synthetic cardenolide α -L-rhamnosides studied by us.⁸

Aglycone Carbons.—Carbon-3 in the aglycone resonates in the same region as the oxygen-bearing carbons of the carbohydrate, but its signal in all glycosides except ouabain (10) is recognised by its invariance (71.8 \pm 0.4 p.p.m.).

For glycosides of digitoxigenin, viz. digitoxin (1) and neriifolin (6), the aglycone carbons were assigned * by comparison with our data on semi-synthetic digitoxi-

* For assignment of the genins (4) and (5) in $\rm CDCl_3-CD_3OD,$ see ref. 1.

genin pyranosides,⁸ on digitoxigenin (4) (in CDCl₃ or CD₃-SOCD₃-CDCl₃),⁸ and on 3-acetyldigitoxigenin (in CDCl₃).⁶ Extension of the assignments to aglycone carbons of the 12 β -hydroxycardenolide glycosides, digoxin (2) and 3^{'''-} acetyldigoxin (3), demonstrated the expected substituent effects due to the 12 β -hydroxy-group. These are γ -gauche shieldings on C-18 (-6.3) and C-17 (-5.2 p.p.m.), a periplanar heteroatom effect ¹⁰ on C-9 (-3.1 p.p.m.), and equatorial β -effects on C-11 (ca. +9) and C-13 (+6.3 p.p.m.).

Position and Configuration of the Epoxide in Cerbertin.— ¹H N.m.r. spectroscopy showed that the epoxide in cerbertin (8) and its carbohydrate-altered analogues (7) and (9) is of the type $-CH\cdotO\cdot CH-$, and is thus at the 11,12- or 6,7-positions of the digitoxigenin skeleton.⁹ A 6,7-epoxide would have little effect on the shielding of C-12. This carbon in digitoxigenin and its glycosides neriifolin (6) and digitoxin (1) resonates at 39.5 p.p.m. Since a methylene signal within 5 p.p.m. of this position is not found in the spectra of cerbertin (8) and its analogues (7) and (9), the epoxide cannot be at the 6,7-position.

With the epoxide placed at the 11,12-position the assignments in Table 1 for the aglycone carbons of cerbertin (8) and its analogues (7) and (9) are given with the consideration that the ring-c epoxide will have minimal influence on the shieldings of carbons 3-7, 15, and 20 - 23.

In Table 2 the shieldings of C-18 and of methine carbons

TABLE 2

¹³ C N.m.r.	chemical	shifts	(to	the	nearest	0.5	p.p.m.,
		except	: C-	18)			

	C-5	C-8	C-9	C-17	C-18
(1) and (6)	36	41	35	50.5	15.7
11α, 12α-Epoxydigitoxigenin	35.5	38	35.5	45.5	15.8
glycosides (7) — (9)					

in the range 35-51 p.p.m. are presented for the digitoxigenin glycosides (1) and (6) and for their 11,12-epoxyanalogues (7)—(9). Comparing the aglycone data for the two series [e.g. neriifolin (6) vs. deacetylcerbertin (7)], carbon shieldings are identical (± 1.5 p.p.m.), except for those shown in Table 2, and for the epoxy-carbons 11 and 12. An 11,12-epoxy-oxygen, if β , is expected to shield C-18 and C-8 strongly. Table 2 shows that there is no effect of any magnitude on C-18, but instead a strong shielding effect on C-17 (-5 p.p.m.). Both observations are compatible with an α -configuration for the epoxide.

Two ¹H n.m.r. results confirm the above conclusion. Firstly, the 11_β-chloro-12-ketone (11) obtained on oxidation of the chlorohydrin (12) from diaxial opening of the α -epoxide ring in 4'-acetylcerbertin (9) ⁹ was reexamined at 100 MHz. The signal of CHClCO (8 4.46) is a singlet of W_{1} 2.7 Hz, the broadening being due to eq-ax coupling between 11-H and 9-H.* A sharp

* Other signals in CDCl₃; δ 0.85, 1.03 (d), and 1.28 (all Me), 2.07 and 2.12 (both Ac), 3.47 (OMe), 3.68 (t, J 9.5 Hz, 3'-H), 4.67 (dd, J 4, 9.5 Hz, 2'-H), 4.73 (t, J 9.5 Hz, 4'-H), 5.09 (d, J 4 Hz, 1'-H), 4.84 (21-H), and 5.99 (22-H).

† The doublet for 11-H is distinguished from that for 12-H $(J_{11,12} 3.9 \text{ Hz})$ because it is broader (by 0.6 Hz) owing to coupling with 9-H (δ ca. 1.8). Saturation of 9-H caused sharpening of the signal of 11-H by 0.6 Hz. Other signals (in CDCl₃) are as for the chloro-ketone (11).

singlet would be expected for the corresponding signal from a 12-chloro-11-ketone derived from diaxial opening of a β -epoxide.

Secondly, 12-H (δ 2.88) in 4'-acetylcerbertin (9) showed a 12% nuclear Overhauser effect (n.O.e.) (relative to OMe) when the 13-methyl signal (δ 0.97) was saturated; none was observed for 11-H (8 3.06). Also, no n.O.e. was observed when the 10-methyl (δ 1.06) was irradiated.[†] The results are compatible with the close proximity of the 13-methyl and 12β -H in an 11α , 12α epoxide.

EXPERIMENTAL

For conditions of the ¹³C n.m.r. and n.O.e. measurements, see ref. 8 and 4, respectively.

We thank Professor S. Sternhell and Mr. G. Brophy for n.m.r. facilities, and Professor T. Reichstein for a sample of neriifolin.

[1/005 Received, 5th January, 1981]

REFERENCES

¹ K. Tori, H. Ishii, Z. W. Wolkowsky, C. Chachaty, M. Sangaré, F. Piriou, and G. Lukacs, Tetrahedron Lett., 1973, 1073.

S. Lang, D. N. Lincoln, and V. Wray, J. Chem. Soc., Perkin *Trans.* 2, 1975, 344; V. Wray and S. Lang, *Tetrahedron*, 1975, 31, 2815; T. Yamauchi, F. Abe, and M. Nishi, *Chem. Pharm.* Bull., 1978, 26, 2894; H. T. A. Cheung, R. C. Coombe, W. T. L. Sidwell, and T. R. Watson, J. Chem. Soc., Perkin Trans. 1, 1981,

64. ³ F. Abe and T. Yamauchi, *Chem. Pharm. Bull.*, 1978, 26, ¹ Luisele P. Medina, I. M. Muchow-3023; A. Cruz, A. Guzman, J. Iriarle, R. Medina, J. M. Muchowsky, and M. L. Maddox, J. Org. Chem., 1979, 44, 3511.
 ⁴ H. T. A. Cheung and T. R. Watson, I. Chem. Soc. Perkin

H. T. A. Cheung and T. R. Watson, J. Chem. Soc., Perkin Trans. 1, 1980, 2162.

⁵ P. Brown, J. v. Euw, T. Reichstein, K. Stöckel, and T. R. Watson, *Helv. Chim. Acta*, 1979, **62**, 412.

⁶ H. T. A. Cheung, T. R. Watson, J. N. Seiber, and C. Nelson, J. Chem. Soc., Perkin Trans. 1, 1980, 2169.
⁷ K. Tori, Ton That Thang, M. Sangaré, and G. Lukacs, Tetrahedron Lett., 1977, 717: J. A. Hembree, C-J. Chang, J. L. McLaughlin, G. Peck, and J. M. Cassady, Lloydia, 1979, 42, 293.

McLaughlin, G. Peck, and J. M. Cassady, *Lloyata*, 1979, 42, 293.
* H. T. A. Cheung, L. Brown, J. Boutagy, and R. Thomas, J. Chem. Soc., Perkin Trans. 1, 1981, preceding paper.
* J. Cable, R. G. Coombe, and T. R. Watson, Aust. J. Chem., 1964, 17, 1423; 1965, 18, 1079.
¹⁰ E. L. Eliel, W. F. Bailey, L. D. Kopp, R. L. Willer, D. M. Grant, R. Betrand, K. A. Christensen, D. K. Dalling, M. W. Duch, E. Wonkert, F. M. Schell and D. W. Cochran, L. M. Chem. Soc. E. Wenkert, F. M. Schell, and D. W. Cochran, J. Am. Chem. Soc. 1975, 97, 322.